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Abstract 

 This paper considers a multilevel programming problem in which the objective functions 

are linear fractional and the constraints are linear. An algorithm based on pre-emptive goal 

programming approach is developed to obtain an optimal feasible solution. The higher level 

decision makers (DMs) provides the preferred values of the decision variables under their control 

and the target value of their objective functions to the next level DM to formulate a goal 

programming problem equivalent to the given multi-level programming problem. The proposed 

method is illustrated with the help of a tri-level programming problem. 

Keywords: Fractional programming, multi-level programming, goal programming, aspirational 

levels. 

1.   Introduction 

 Multi-level programming problems (MLPP) are the characterization of mathematical 

programming to solve decentralized planning problems with multiple decision makers (DMs) 

where each unit seeks its own interest.  

 Multi-level programming problem is a sequence of optimization problems in which the 

constraints region of one is determined implicitly by the solution of the other levels. Such 

problems can be formulated as a series of nested linear mathematical programs to be solved 

simultaneously over a single poly-hedral region. In MLPP different DMs located at different 

hierarchical levels, each independently controls a set of decision variables. The highest level DM 

(HLDM) makes his decision in full view of the lower level DM (LLDM). Each DM attempts to 

optimize its objective function and is affected by the action of the other DM. 

 The general MLPP is 

(P1) 
1

1 11 1 12 2 1k k
X

Maxf (X) c X c X c X     

 
2

2 21 1 22 2 2k k
X

Maxf (X) c X c X c X     
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k

k k1 1 k2 2 kk k
X

Maxf (X) c X c X c X     

 subject to 

 i1 1 i2 2 ik k iA X A X A X b    , i = 1, 2, ..., m 

 X1, X2, ...., Xk  0 

 with  one  DM  at  each  level,  n  decision   variables  and  m   constraints.  Let X = (X1, X2, ...., 

Xk), n = n1 + n2 + + nk, where  the  decision  vector  Xk is  under the control of the kth level DM 

and has nk number of decision variables 

 Multi-level programming is particularly appropriate for problems with the following 

characteristics. 

 There exists interacting decision making within a predominantly hierarchical structure. 

 Each lower level executes its policies after and in view of the decisions of the higher level. 

 Each decision making unit optimizes its own function independently of the other units but is 

affected by the actions of other units as an externality. 

 The external effect on a DMs  problem is reflected both in his objective function and his set of 

feasible decisions. 

 This decision making process is extremely practical to such organization structural levels as 

agriculture, government policy, economic systems etc. and is especially suitable for conflict 

resolution. 

           The Stackelberg strategy has been employed as a solution concept when decision problems 

are modeled as MLP problems. Computation methods for the Stackelberg solution are classified 

roughly into three categories: the vertex enumeration approach [6] based on the characterstic  

that an extreme point of a set of best responses of the DM at the lower level is also that of a set of 

common constraints, the Kuhn-Tucker approach in which the upper levels with constraints 

including lower levels problem is solved and the penalty function approach which adds a penalty 

term to the upper level’s objective function so as to satisfy optimality of the lower level’s problem. 

              Bard [2] and Wen and Bialas [13] have proposed an algorithm for tri-level programming 

problems. Bard [2] formulates a normal nonlinear programming problem by using the Kuhn-
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Tucker conditions for the problems of the third level and the second level and proposes a cutting 

plane algorithm employing a vertex search procedure to solve a tri-level linear programming 

problem. Wen and Bialas [13] developed a hybrid algorithm to solve a tri-level linear 

programming problem. The algorithm adopts the kth best extreme point and the complementary 

pivot algorithm to check feasibility.  

            In many practical applications like cutting stock problems, ore blending problems, optimal 

policy for Markovian chains, sensitivity of linear programming problems (LPP), optimization of 

ratios of criteria gives more insight into the situation than optimizing (LPP). 

 Fractional programming has received remarkable attention in the literature. Ref. [5] gives a 

survey on fractional programming which covers applications as well as major theoretical and 

algorithmic developments. Thus, ratio functions arise in economic applications when efficiency 

measures of a system is to be optimized or in approaching a stochastic programming problems. 

Gilmore and Gomory [7] discussed a cutting stock problem in paper industry and showed that 

under the given circumstances, it is important to minimize the ratios of wasted and used amount of 

raw material instead of just minimizing the amount of wasted material. This leads to a linear 

fractional program. 

 Charne’s and Cooper [3] showed that a linear fractional programming problems can be 

optimized by solving two linear programs, Zionts [14] had shown that if the linear fractional 

programming problem (LFPP) has a finite optimal solution, then whether a feasible solution to 

LFPP has a positive or negative denominator, it is sufficient to solve only one of the equivalent 

linear program depending on the sign of denominator. Craven [5] discussed  in  details  LFP. There  

exists  several methodologies [9, 10, 11, 12] to solve bilevel fractional programming problems and 

MLFPP. This paper presents a goal programming approach to solve MLFPP. Recently Malhotra 

and Arora [10] have presented a priority based goal programming approach to solve bilevel 

fractional programming. In this paper this approach is extended. 

 This paper is organized as follows. Section 2 defines the goal programming and discusses 

the case when the objective function is linear fractional. Section 3 gives the multi-level fractional 

programming and the method to convert this problem into a goal programming problem. Section 4 

and 5 gives the algorithm and the flow chart. In order to facilitate the comprehension of the 

algorithm, a numerical example, is presented in Section 6. Finally a summary is given in Section 7. 
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2.   Goal Programming 

 Goal programming (GP) is one of the approaches to solve the multiple objective 

programming problems.  

 In most of the multiple objective decision making problems, the objectives are competitive, 

incommensurable and often conflicting in nature. Such problems involve trade-off relations among 

the objectives to get the “optimal compromise solution”. Goal programming introduced by Charnes 

and Cooper in 1961 [4] appeared as a robust tool to solve a linear multiobjective programming 

(MOP) problem given by 

(P2) Max Z = CX 

 subject to AX  b 

        X  0 

where X  Rn, Z = (z1, z2, ...., zK) is the vector of objectives. C is a K x n matrix of objectives. A is 

an m  n matrix and b  Rm. In GP the distance between the objective function vector Z and an 

aspiration level vector Z* is minimized. The aspiration level is either determined by the DM or is 

taken as Z* = 
* * *

1 2 k(z ,z ,...., z )  where 
*

kz  is the optimal value of zk subject to the set of constraints in 

(P2)   

General pre-emptive GP model to solve (P2) is given by 

(P3)     Min Z = { 




iPk

kkkk )d,d(gw , i = 1,2,...,I} 

            subject to AX  b  

  

kkk ddXc
*

kz  

  X  0 

 k k k kd , d 0, d .d 0, k 1,2,...,K        

  where  

kd ,  

kd  are  deviational  variables  and  wk are their weights, gk(


kd , 

kd ) = 

kd   in  case  

of  maximizing zk,  gk(


kd , 

kd ) = 

kd   in case  of  minimizing zk and gk(


kd , 

kd )= 

kd + 

kd  when zk 

= 
*

kz  is  required. ck is the  kth  row  vector  of matrix C. I  is the number of priority levels and  k 


iP  means that kth goal is in the ith priority level. 

 Let the goal objective at the ith priority level be a linear fraction given by 
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     i i

i i

e X

f X

 


 

where ii

nT

i

T

i β,α,Rf,e   are scalars and fiX + i > 0. Then the goal constraint corresponding to the 

ith priority level is given by 

 i i

i i

e X

f X

 


+ *

i
z

i
d

i
d   

i.e. ++
ii
αXe id  (fiX + i

β ) - id  (fiX + i
β ) = *

i
z (fiX + i

β ) 

where *

iz  is the aspiration level for the objective goal, i id , d   are the deviational variables. Then 

the fractional goal programming problem is 

(P4) 
i

k k

k P

Minimize d d , k 1,2,...K 



 
  

 
  

 subject to 

  AX  b 

 ++
kk

αXe
_

k
d  (fkX+ k

β )- 

1d ( fkX+ k
β )= *

k
z ( fkX+ k

β )), k = 1,2,…,K 

Let k k k kd (f X ) D    

and k k k kd (f X ) D    

(P4) is equivalent to the following goal programming problem 

(P5)    
i

k k

k P

Minimize D D , k 1,2,...K 



 
  

 
  

 subject to AX  b 

 )
k
βX

k
(f*

k
z

k
D

k
D)

k
αX

k
(e  ,    k = 1,2,…,K 

 k k k kX, D , D 0,D .D 0, k 1,....,K      
_

k
d  

(P5) is a linear goal programming problem. The optimal values of  
_

k
d , +

k
d  in (P4) can be obtained 

from the optimal values of k kD , D 
 in (P5) based on the following results. 

 Let S = {XRn | AX  b, X  0} denote the feasible region. 

Theorem 1 [8]  : If the minimum of problem (P4) and (P5) occur at X1 and X2 respectively, where 

X1 and X2 are in S, then 

http://www.jetir.org/


© 2015 JETIR November 2015, Volume 2, Issue 11                                                 www.jetir.org (ISSN-2349-5162) 

JETIR1701296 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1803 
 

(i) id 0   if and only if iD 0  .     

(ii) id 0   if and only if iD 0  . 

Theorem 2  [8]  : If the minimum of problem (P4) and (P5) occur at X1 and X2 respectively where 

X1 and X2 are in S, then 

(i) 
i1i

i

βXf

D





 

id
i2i

i

βXf

D





,    if id  > 0 

(ii) 
i2i

i
i

i1i

i

βXf

D
d

βXf

D











,    if id  > 0 

Thus we conclude that 

(i) If iD 0   and iD 0   in the optimal solution of the related problem (P5) then the optimal 

values of id  and id  are also zero and the goal is completely achieved. 

(ii) In case 

iD > 0 in the optimal solution of the related GPP (P5) then id 0   and the optimal 

value of id  can be obtained by solving the following problem 

Minimize i
i

i i

D
d Minimize

f X


 


 

subject to 

  iii

*

iii D)βX(fz)αX(e  

 X  S 

Similar argument holds if iD
 > 0 

3.   GP Approach to MLFPP 

 Consider the multi-level programming problem with fractional objectives as follows: 

(P6) 
1

1 1
1

X
1 1

C X
Max f (X)

D X





 

 
2

2 2
2

X
2 2

C X
Max f (X)

D X





 

   

 
KK

KK
k

X βXD

αXC
(X)fMax

K 


  
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subject to X  S 

where S denotes the feasible region. 

       Solve  the  MLPP  (P6)  with  the first  level  objective  function  f1. Let X11, X12, ...., 11K
X  be 

its optimal solutions. 

 Let f1(X11) = f1
11. Then find the value of the second level DM objective function f2 at these 

points and arrange them in descending order say 

 f2(X11)    f2(X12)    …   f2 )(X 11K  

i.e. 11

2f    12

2f    …   11K

2f  

 Introduce the aspiration levels 11

2

11

1

11

1 f,f,X  for the variables X1 and first and second level 

DMs objective function and solve the following GPP using pre-emptive goal programming 

technique. 

(P7)    Min P1 (


1d + 

1d ) 

           Min P2 (


2d + 

2d )   

           Min P3 (


3d ) 

 subject to 

  
11

1 1 1 1X d d X     

  
111 1

2 2 1

1 1

C X
d d f

D X

 
  


 

  
112 2

3 3 2

2 2

C X
d d f

D X

 
  


 

  AX  b 

  X  0 

  k k k kd , d 0 d .d 0, k 1,2,3       

where goals at priority P1 and priority P2 are taken to be absolute. Problem (P7) is equivalent to the 

following problem: 

(P8)   Min P1 (


1d + 

1d ) 

          Min P2 (


2D + 

2D )          
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          Min P3 (


3D ) 

       subject to 

 11

1 1 1 1X d d X     

11

1 1 2 2 1 1 1C X D D f (D X )       

11

2 2 3 3 2 2 2C X D D f (D X )       

AX  b 

X  0 

          1 1 1 1d , d 0 d .d 0,      

          k k k kD , D 0 D .D 0, k 2,3       

where k kD , D ,   k = 2, 3   are the deviational variables given by  

2 2 1 1D d (D X )    

2 2 1 1D d (D X )    

3 3 2 2D d (D X )    

3 3 2 2D d (D X )    

We solve the problem (P8) using pre-emptive goal programming  method. 

The solution to the problem (P8) is either (i) feasible or (ii) infeasible, where feasible solution 

means that the goals at the priority level P1 and P2 are fully achieved i.e. the objective function 

values of goals at P1 and P2 are zero. 

In case (i) 3D
 = 0 and 3D

 = 0 and have X11 as the solution of the second level. 

In case (ii) there are 3 possibilities 

(a) If 3D
 > 0 then X11 is the solution of the second level. 

(b) If 3D
 = 0, 3D

 = 0 then also X11 is the solution of the second level. 

(c) If 3D
 > 0 then X11 is not the solution of the second level, repeat the process with the next 

alternate solution X12 taking X1 = X1
12,  

f1  =  f1
12 ,  f2  =  f2

12. Continue   this   process   till  either  some   Xij, j = 1, ..., K1 turns out 
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to be the solution to the second level or none of Xij; j = 1, ...,K1 is the solution of the second 

level. 

In the later case, find the next best solution of the problem (P1). Let the next best value of f1 

be f1
2 at the points X21, X22, ...., 22K

X . Find the value of f2 at these points and arrange them in 

descending order. 

Let 22K

2

22

2

21

2 f...ff  . Repeat the process with the points  

X2j, j = 1, 2, ...., K2. Continue till some extreme point turns out to be the solution of the second 

level. Since the set of extreme points is finite, the process converges in a finite number of steps. 

After finding the solution of the first two levels say X11, consider the third level DMs 

objective function and find the value of the objective function f3 at the solution of first two levels 

say f3
11 and consider the preemptive GP model of three level programming problem at X11 as 

(P9) 1 1 1Min P (d d )   

 2 2 2Min P (d d )   

 3 3 3Min P (d d )   

4 4 4Min P (d d )   

5 5Min P (d )  

subject to  

            
11

1 1 1 1X d d X     

111 1
2 2 1

1 1

C X
d d f

D X

 
  


 

11

2332 XddX    

22

22

βXD

αXC




+ 

4d  - 

4d  = 11

2f  

113 3
5 5 3

3 3

C X
d d f

D X

  
  


 

Ax  b 

X  0 

         0d,d kk           0.dd kk    k = 1,2,3,4,5 

Problem (P9) is equivalent to the following problem:  
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(P10) 1 1 1Min P (d d )   

 2 2 2Min P (D D )   

 3 3 3Min P (d d )   

4 4 4Min P (D D )   

5 5Min P (D )  

subject to  

11

1 1 1 1X d d X     

11

1 1 2 2 1 1 1C X D D f (D X )       

11

2 3 3 2X d d X     

22 αXC  + 

4D  - 

4D  = )βX(Df 22

11

2   

           33 αXC   + 

5D  - 

5D = )βX(Df 33

11

3   

AX  b,  X  0 

0d,d kk           0.dd kk         k = 1,3 

k k k kD , D 0 D .D 0, k 2,4,5             

where k kD , D ,   k = 2,4,5 
 are the deviational variables given by  

2 2 1 1D d (D X )    

2 2 1 1D d (D X )    

4 4 2 2D d (D X )    

4 4 2 2D d (D X )    

5 5 3 3D d (D X )    

5 5 3 3D d (D X )    
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 Solve the problem (P10) using pre-emptive goal programming method. We have three 

cases: 

(a) If 5D 0   and 5D 0  , then X11 is the solution of the three level programming problem 

(b) If 

5D  > 0 then X11 is the solution of the three level programming problem. 

(c) If 5D  > 0 then X11 is not the solution of the three level programming problem and repeat the 

process. 

 After finding the solution of the first three levels, move to the next level and continue the 

process till all levels are included. 

 Here the solution process first starts by considering two levels and obtaining the solution of 

the first two levels and then we move to the next lower level and so on. 

 The solution procedure is summarized in the following goal programming algorithm: 

4.   Goal Programming Algorithm 

Step 1     Let i = 1 

Step 2    Solve the problem with the first level DMs objective function              i.e. solve the 

problem 

(P11) 
1

1 1
1

X
1 1

C X
Max f (X)

D X





 

 subject to AX  b,  X  0 

Let )X,...,X,X(X
j1

K

j1

2

j1

1

j1
= , j = 1,...,K1, be its optimal solution. 

Let f1(X11) = f1
11 and go to step3. 

Step 3 Find the value of 2nd level DMs objective function f2 at these points and arrange them in 

descending order say 

             )X(f 11

2  ≥ )X(f 12

2  ≥ … ≥ )X(f 1K1

2  

               i.e. 11

2
f  ≥ 12

2
f  ≥ …≥ 1K1

2
f  

Step 4       Set j = 1 
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Step 5    Convert the decision variables Xk, k = 1, ...,i and the objective functions of the first (i + 

1)th DMs into goals and consider the following goal programming problem 

(P12) Min )d(dP 12t12t12t







      t = 1, ...., i 

 2t 2t 2tMin P (d d )    t = 1, ...., i 

 2t 1 2t 1Min P (d )

   

 subject to 

 ij

t12t12tt XddX  





             t = 1, 2, ..., i 

ijt t
2t 2t t

t t

C X
d d f

D X

 
  


, t = 1, 2, ..., i 

12i

1i1i

1i1i
d

βXD

αXC
+

++

++
+

+

+
-

ij

1i12i
fd

+
+

+
=  

Ax  b 

X  0 

t t t td , d 0 d .d 0, t 1,2,3,...,2i 1        

Problem (P12) can be rewritten as 

  (P13)  Min P2t-1(






  12t12t dd )   t = 1, 2 ...., i 

    Min )D(DP 2t2t2t

      t = 1, 2,...., i 

   Min )(DP 12t12t



   

             subject to 

            ij

t12t12tt XddX  





               t = 1, 2, ..., i 

                     
ij

t t 2t 2t t t tC X D D f (D X )      , t = 1, 2, ..., i 

                     )βX(DfDDαXC 1i1i

ij

1i12i12i1i1i 







   

                      Ax  b, X  0  

                     2t 1 2t 1 2t 1 2t 1d , d 0 d .d 0, t 1,...,i   

       
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                     0D,D 2t2t                   

2t2t .DD = 0,  t = 1,…, i 

                     0D,D 12t12t 






             





 12t12t .DD = 0,   

Step 6 Solve the problem (P13) by pre-emptive goal programming method. If Xij is the 

feasible solution of GPP (P12) then go to step10, else go to step 7. 

Step 7 Since the problem is infeasible there are two possibilities:         (i)  If 2iD  > 0, 

12iD = 

0, 2i 1D

   0, then Xij is the solution for the first (i +1)th levels and go to step 10. 

 (ii)  If 2iD  > 0 and 2i 1D

  > 0 then go to step 8. 

Step 8  If j = Ki, go to step 9 else set j = j + 1, i = 1 and go to step 5. 

Step 9 Find the next best solutions of problem (P11) and repeat with this solution. 

Step 10 Set i = i + 1, if i < K then  go to step 5 and if i = K, stop. Xij is the optimal solution of 

the MLPP. 
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5.   Flow Chart 

 The flowchart of the above algorithm is shown in fig.1. 

 
Start 

 

 

Set i = 1 

 

 

Solve problem P(11) and record its optimal solutions 

X1j, j = 1,..., K1 

 

 

f1(X11) = f1
11,…, )X(f 1K1

1
= 1K1

1
f  

 

j1

2

j1

2
f)X(f = ,  j=1,…,K1 

 

j = 1 

 

 

Convert the first (i+1) objective functions and the decision  

variables Xi controlled by the first i DMs into goals by setting  

the aspiration levels as 
ij

tf , t = 1, ..., i + 1 and  

ij

tX , t = 1, ..., i  respectively. 

 

 

Formulate the fractional GPP as in P(12) by introducing  

under and over-deviational variables 

 

 

Reformulate the problem P(12) as a linear goal 

programming problem as in P(13) 

 

Solve the problem P(13) 

 

 

Is 

Xij a 

feasible soln 

to P(12)? 

 

 

    A 

 

 

 

 

 

 

 

 

 

C 

E 

Y 
i = i + 1 B 

N 
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    Is i < K? 

      

 

      Stop                                                             Y 

                      

 

 

 

 

 

  

 

 

 

 

 

 
 

 

 

 

 

6.   Example  

 
1x

Max (x)f1  = 
1xx

2xx

31

31




 

 
2x

Max (x)f2  = 
1x2x

42xx

321

21





x
 

 
3x

Max (x)f3  = 
3xx

1x- x

21

321



 x
 

subject to  

E 

A 

Xij is the soln for the 

first (i+1)th levels 

j = j + 1, i =1 

Find the next best solution of 

problem P(11)  

C 

Xij is the optimal 

solution for the MLPP 

B 
N 

Y 

Y 

Y 

N 

Is 

2iD  > 0, 

0,D 12i 
  

?012 
iD  

 

Is 

2iD > 0, 

0,D 12i 
  

Is 
j = K1? 

 

N 

E 

   i = i + 1 

B 
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                 x1 + 2x2 + x3   6 

                 2x1 + x2 - x3   4 

                       2x2 +3 x3   6 

                      x1,  x2 , x3    0 

Solve the problem (P1) given by  

(P14)  Max f1(x) = 
1xx

2xx

31

31




 

          subject to. 

        x1 + 2x2 + x3   6 

        2x1 + x2 - x3   4 

        2x2 + 3x3   6 

        x1 , x2 , x3   0 

Optimal solution  of problem  (P1) is (0, 0, 2) and the maximum value of f1 is 4/3. 

f2(0, 0, 2) = 4/3 

Therefore preemptive GP model of first two level programming problem with the point 

(0, 0, 2), f1 = 4/3, f2 = 4/3 is 

 (P15) Min P1 (


1d + 

1d ) 

           Min P2 (


2d + 

2d ) 

           Min P3 (


3d ) 

           subject to 

      x1 + 

1d - 

1d  = 0 

     
1xx

2xx

31

31




+ 

2d - 

2d  =  4/3 

     
1x2x

42xx

321

21





x



3d - 

3d  = 4/3 

      x1 + 2x2 + x3   6 

      2x1 + x2 - x3   4 
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      2x2 + 3x3   6 

      x1 , x2 , x3   0 

     

id , 

id   0, 

id . 

id = 0  i = 1, 2, 3. 

  The first two objectives are considered absolute. 

Problem (P15) is equivalent to the following problem: 

(P16) Min P1 (


1d + 

1d ) 

          Min P2 (


2D + 

2D ) 

          Min P3 (


3D ) 

          subject to 

            x1 + 

1d - 

1d  = 0 

 x1 + 2x3 +


2D  - 

2D  =  4/3(x1 + x3 + 1) 

            x1 + 2x2 + 4 + 

3D - 

3D  = 4/3(2x1 + x2 + x3 + 1) 

  x1 + 2x2 + x3   6 

  2x1 + x2 - x3   4 

 2x2 + 3x3   6 

       x1 , x2 , x3   0 



1d , 

1d   0     

1d . 

1d = 0 

            

iD  , 

iD    0   

iD . 

iD = 0   i =  2, 3. 

where 

2D = 

2d ( x1 + x3 + 1)             

2D = 

2d  ( x1 + x3 + 1)         

      

3D = 

3d  (2x1 + x2 + x3 + 1)    

3D = 

3d  (2x1 + x2 + x3 + 1) 

   Solve (P16) using pre-emptive GP technique. 

     The solution (0, 0, 2) is infeasible as 

3D   0. 
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     Since  the alternate  solution to  (P14)  does not  exist, so consider  the next best   solution  

(3, 0, 2)  and  solve  (P16)  with  constraint  (i)   replaced   by  x1 + 

1d - 

1d  = 3  and the 

constraint (ii) and (iii) respectively replaced by   

    x1 + 2x3 +


2D  - 

2D  =  7/6(x1 + x3 + 1) 

    x1 + 2x2 + 4 + 

3D - 

3D  = 7/9(2x1 + x2 + x3 + 1) 

The solution to this problem is infeasible. 

Since the alternate solution does not exist, so move to the next best solution (4/3, 2, 2/3) 

of the first level. Formulate and solve the GPP for the first two levels. On solving we find that 

(4/3, 2, 2/3) is a feasible solution for the two levels. 

Consider the third level. Formulate and solve the GPP. 

On solving we find that (4/3, 2, 2/3)  is not the feasible solution for the three level program. 

Move to the next best solution (2/3, 8/3, 0) of the first level and formulate the pre-

emptive GPP 

      (P17)  Min P1 (


1d + 

1d ) 

 Min P2 (


2D + 

2D ) 

                  Min P3 (


3D ) 

       subject to. 

            x1 + 

1d - 

1d  = 2/3 

            x1 + 2x3 +


2D  - 

2D  =  2/5(x1 + x3 + 1) 

            x1 + 2x2 + 4 + 

3D - 

3D  = 2(2x1 + x2 + x3 + 1) 

            x1 + 2x2 + x3   6 

             2x1 + x2 - x3   4 

             2x2 + 3x3   6 

             x1 , x2 , x3   0 

            

1d , 

1d   0     

1d . 

1d = 0 
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            

iD  , 

iD    0   

iD . 

iD = 0   i =  2, 3. 

where 

2D = 

2d ( x1 + x3 + 1)             

2D = 

2d  ( x1 + x3 + 1)  

     

3D = 

3d  (2x1 + x2 + x3 + 1)    

3D = 

3d  (2x1 + x2 + x3 + 1) 

The solution to this problem is feasible. 

Move to the third level. 

f3(2/3, 8/3, 0) = 13/19 

 Solve the GPP 

(P18 )  Min P1 (


1d + 

1d ) 

         Min P2 (


2d + 

2d ) 

         Min P3 (


3d + 

3d ) 

         Min P4 (


4d + 

4d ) 

         Min P5 (


5d ) 

        subject to 

             x1 + 

1d - 

1d  =2/3 

           
1xx

2xx

31

31




+ 

2d - 

2d  =  2/5 

            x2 + 

3d - 

3d  = 8/3 

           
1x2x

42xx

321

21





x
 + 

4d - 

4d  = 2 

           
1x2x

42xx

321

21





x
 + 

5d - 

5d  = 13/19 

             x1 + 2x2 + x3   6 

             2x1 + x2 - x3   4 

             2x2 + 3x3   6 

             x1 , x2 , x3   0 
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           

id , 

id   0, 

id . 

id = 0  i = 1, 2, 3,4,5. 

Problem (P18) is equivalent to the following problem: 

 (P19)  Min P1 (


1d + 

1d ) 

         Min P2 (


2D + 

2D ) 

         Min P3 (


3d + 

3d ) 

         Min P4 (


4D + 

4D ) 

         Min P5 (


5D ) 

        subject to 

                  x1 + 

1d - 

1d  = 2/3 

                 x1 + 2x3 +


2D  - 

2D  =  2/5(x1 + x3 + 1) 

      x2 + 

3d - 

3d  = 8/3 

      x1 + 2x2 + 4 + 

4D  - 

4D  = 2(2x1 + x2 + x3 + 1) 

      x1 + x2 – x3 + 1 + 

5D  - 

5D = 13/19(x1 + x2 + 3) 

      x1 + 2x2 + x3   6 

      2x1 + x2 - x3   4 

      2x2 + 3x3   6 

      x1 , x2 , x3   0 

      

id , 

id   0, 

id . 

id = 0  i = 1, 3. 

      

iD  , 

iD    0   

iD . 

iD = 0   i =  2, 3. 

where 

2D = 

2d ( x1 + x3 + 1)                

2D = 

2d  ( x1 + x3 + 1)         

     

4D   = 

4d  (2x1 + x2 + x3 + 1)    

4D = 

4d  (2x1 + x2 + x3 + 1) 

    

5D  = 

5d  (x1 + x2 + 3)               

5D = 

5d  (x1 + x2 + 3) 

      Solving we get the feasible solution as (2/3, 8/3, 0). 
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Thus (2/3, 8/3, 0) is the optimal solution of the given problem with optimum values of f1, f2, f3 

as 2/5, 2, 13/19. 

7.   Summary and concluding remarks: 

             This paper has proposed a multi-level fractional decision making problem with linear 

constraints and a goal programming method for solving this problem.  

The proposed goal programming method gives an efficient solution for MLFPP keeping 

the hierarchy intact. The higher level DMs provides the preferred values of the decision 

variables under their control and the target value of their objective functions to the next level 

DM to formulate a goal programming problem equivalent to the given multi-level 

programming problem. The solution process first starts by considering the first two levels and 

obtaining the solution of the first two levels and then moving to the next lower level till all the 

levels are included. An illustrated numerical example has been provided to demonstrate the 

proposed solution method. 
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